J/ψ Production in p+p and Au+Au collisions from the PHENIX Experiment

Abigail Bickley
University of Colorado
April 15, 2007

- ★ p+p Collisions
 - Production Mechanism:
 - cc̄ pairs predominantly generated in hadronic collisions via gluonic diagrams

 Details of hadronization process remain unclear

Color Singlet Model

Color Octet Model

pQCD with 3-gluons

★ Au+Au Collisions

- J/ψ Suppression Models:
 - Assume quarkonia are formed only during the initial hard collisions
 - Subsequent interactions only result in additional loss of yield
 - Suppression of J/ ψ yield with increasing collision centrality

★ Au+Au Collisions

- J/ψ Suppression Models:
- J/ψ Recombination Models:
 - In central heavy ion collisions more than one c-cbar pair is formed
 - Regeneration of J/ψ pairs from independently produced c and cbars
 - Increased J/ ψ yield with increasing collision centrality
 - Narrowed J/ ψ rapidity and p_T distributions with increasing centrality

★ Au+Au Collisions

- J/ψ Suppression Models:
- J/ψ Recombination Models:
- Sequential Melting:
 - J/ ψ yield is populated from both direct production and feeddown from the higher resonance states
 - Relative yield from each source experimentally found: 60% direct production, 30% χ_c feeddown, 10% ψ' feeddown
 - Medium conditions determine whether each state is bound
 - Recent lattice results => J/ψ suppression turns on at T > 2 T_c

p+p Collisions

J/ψ Cross Section vs p_T

- p_T spectrum mapped from 0-9 GeV/c
- Ratio of p_T distributions shows a softening at forward rapidity

- Sufficient statistics for 11 rapidity bins
- Data now limited by systematic error

J/ψ Cross Section vs Rapidity

- Comparison with theory allows differentiation among the available J/ψ production mechanisms
- Many calculations are inconsistent with the steepness of the slope at forward rapidity and the slight flattening observed at mid-rapidity
- PHENIX acceptance covers 92% of integrated cross section

Au+Au Collisions

R_{AA} versus Centrality

- Suppression at forward rapidity greater than at mid-rapidity
- Cold nuclear matter models predict opposite trend
- Observed suppression greater than CNM predictions

R_{AA} versus Centrality

Similar level of suppression:

- 200 GeV Au+Au @ lyl<0.35
- 158 GeV/A Pb+Pb @ 0<y<1

Invariant Yield versus p_T

<p_T²> extracted using Kaplan function integrated to 5 GeV/c

$$f(p_T) = p_0 \left[1 + \left(\frac{p_T}{p_1} \right)^2 \right]^{-6}$$

<p_72> vs Centrality

Good consistency is found between the $\langle p_T^2 \rangle$ in Heavy Ion collisions as a function of centrality and the p+p results for the $\langle p_T^2 \rangle$ integrated over $p_T \langle 5 \text{GeV/c}$.

Invariant Yield versus Rapidity

- Shape of rapidity dependence of J/ψ yield narrows slightly as a function of centrality
- No difference observed between peripheral Au+Au and p+p distributions
- Sharp rapidity

 narrowing predicted
 by recombination
 models not present

Summary

• p+p data:

- Provide a challenge for production models
- p_T spectrum mapped from 0-9 GeV/c
- Ratio of forward and mid-rapidity p_T distributions show a softening at forward rapidity
- Rapidity distribution slightly flatter than most models and falls off more rapidly at forward rapidity

• Au+Au data:

- Significant J/ Ψ suppression in central collisions $R_{AA} \sim 0.3$
- Similarity between suppression observed at the SPS and RHIC is striking
- Suppression weaker than pure color screening predictions
 - Recombination of uncorrelated quarks?
 - Sequential dissociation of charmonium states?
 - Other explanations??

PHENIX Detector

 $J/\psi \rightarrow e^{+} e^{-}$ p > 0.2 GeV/c $|\eta| < 0.35$ $\Delta \phi = \pi$

 $J/\psi \rightarrow \mu^{+} \mu^{-}$ p > 2GeV/c 1.2 < |y| < 2.2 $\Delta \phi = 2\pi$

Signal Extraction

Mid-Rapidity: |y| < 0.35

Forward Rapidity: 1.2< |y| <2.2

J/ψ Cross Section vs p_T

<p_T²> extracted using Kaplan function integrated to ∞

$$f(p_T) = p_0 \left[1 + \left(\frac{p_T}{p_1} \right)^2 \right]^{-6}$$
Mid-rapidity:

$$\langle p_T^2 \rangle = 4.14 \pm 0.18^{+0.30}_{-0.20}$$

Forward danidity= 23/19

$$\langle p_T^2 \rangle = 3.59 \pm 0.06 \pm 0.16$$

If the explored to float a slightly better fit is obtained, $\chi^2/\text{ndf} =$ 20/16

But the $\langle p_T^2 \rangle$ is not significantly modified: $< p_T^2 > = 3.68$

Forward Rapidity <p-2>: Run 3 vs 5 1/2π p_T Bd²σ/dydp_T [nb/(GeV/c)²] 0 0 0 0 0 0 0 0 **PH**ENIX //2π p_τ Bd²σ/dydp_τ [nb/(GeV/c)² PRL96, 012304, 2006 hep-ex/0611020 • Run 3 • Run 5 Run 3 PRL96, 012304, 2006 Run 5 hep-ex/0611020 10⁻⁵ p_T (GeV/c) p_T (GeV/c)

- x10 higher statistics available from run 5 data set relative to run 3
- Allows shape of p_T spectrum to be mapped with high precision
- Within errors the p_T spectra for both runs agree

- The increased statistics of the run 5 p+p data allow for an improved understanding of the shape of the p_T spectrum & allow the p_T to be completely defined \Rightarrow extrapolation in no longer necessary
- The run 3 p+p results have been revisited and it was found that the systematic error was underestimated.
- A reanalysis of the d+Au is underway to determine how this effects our interpretation of that a set.

Cross Section vs Rapidity Global scale uncertainty: 10.1% Bd⊲/dy (nb) 20 J/ψ -> μ⁺μ⁻ ■ J/ψ -> e⁺e⁻ -Gaussian **PH*ENIX** hep-ex/0611020 Double Gaussian -2 2

- The statistics available are large enough to allow eleven rapidity bins!!
- Data now limited by systematic error not statistics
- The data slightly favor a flat distribution over the rapidity range lyl<1.5 But!
- Remember the systematic errors on the mid and forward rapidity points are independent : a narrower distribution is not excluded.

Signal Extraction

Mid-Rapidity: |y| < 0.35

Signal Extraction

Forward Rapidity: 1.2 < |y| < 2.2

